First trial and StartReact effects induced by balance perturbations to upright stance.

نویسندگان

  • A D Campbell
  • J W Squair
  • R Chua
  • J T Inglis
  • M G Carpenter
چکیده

Postural responses (PR) to a balance perturbation differ between the first and subsequent perturbations. One explanation for this first trial effect is that perturbations act as startling stimuli that initiate a generalized startle response (GSR) as well as the PR. Startling stimuli, such as startling acoustic stimuli (SAS), are known to elicit GSRs, as well as a StartReact effect, in which prepared movements are initiated earlier by a startling stimulus. In this study, a StartReact effect paradigm was used to determine if balance perturbations can also act as startle stimuli. Subjects completed two blocks of simple reaction time trials involving wrist extension to a visual imperative stimulus (IS). Each block included 15 CONTROL trials that involved a warning cue and subsequent IS, followed by 10 repeated TEST trials, where either a SAS (TESTSAS) or a toes-up support-surface rotation (TESTPERT) was presented coincident with the IS. StartReact effects were observed during the first trial in both TESTSAS and TESTPERT conditions as evidenced by significantly earlier wrist movement and muscle onsets compared with CONTROL. Likewise, StartReact effects were observed in all repeated TESTSAS and TESTPERT trials. In contrast, GSRs in sternocleidomastoid and PRs were large in the first trial, but significantly attenuated over repeated presentation of the TESTPERT trials. Results suggest that balance perturbations can act as startling stimuli. Thus first trial effects are likely PRs which are superimposed with a GSR that is initially large, but habituates over time with repeated exposure to the startling influence of the balance perturbation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acute alcohol intoxication impairs segmental body alignment in upright standing.

Balance control when standing upright is a complex process requiring input from several partly independent mechanisms such as coordination, feedback and feedforward control, and adaptation. Acute alcohol intoxication from ethanol is recognized as a major contributor to accidental falls requiring medical care. This study aimed to investigate if intoxication at 0.06 and 0.10% blood alcohol concen...

متن کامل

StartReact Effects Support Different Pathophysiological Mechanisms Underlying Freezing of Gait and Postural Instability in Parkinson’s Disease

INTRODUCTION The pathophysiology underlying postural instability in Parkinson's disease is poorly understood. The frequent co-existence with freezing of gait raises the possibility of shared pathophysiology. There is evidence that dysfunction of brainstem structures contribute to freezing of gait. Here, we evaluated whether dysfunction of these structures contributes to postural instability as ...

متن کامل

Does the StartReact Effect Apply to First-Trial Reactive Movements?

INTRODUCTION StartReact is the acceleration of reaction time by a startling acoustic stimulus (SAS). The SAS is thought to release a pre-prepared motor program. Here, we investigated whether the StartReact effect is applicable to the very first trial in a series of repeated unpractised single-joint movements. METHODS Twenty healthy young subjects were instructed to perform a rapid ankle dorsi...

متن کامل

Subject-specific muscle synergies in human balance control are consistent across different biomechanical contexts.

The musculoskeletal redundancy of the body provides multiple solutions for performing motor tasks. We have proposed that the nervous system solves this unconstrained problem through the recruitment of motor modules or functional muscle synergies that map motor intention to action. Consistent with this hypothesis, we showed that trial-by-trial variations in muscle activation for multidirectional...

متن کامل

Assessing Standing Balance using MIMO Closed Loop System Identification Techniques

Human standing balance is a complex of systems, like the muscles, nervous system and sensory systems, interacting with each other in a closed loop to maintain upright stance. With age, disease and medication use these systems deteriorate, which could result in impaired balance. In this paper, it is demonstrated that multi-input-multi-output closed loop system identification techniques (MIMO-CLS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 110 9  شماره 

صفحات  -

تاریخ انتشار 2013